Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging.

نویسندگان

  • Jun Wu
  • J Deborah Holstein
  • Geeta Upadhyay
  • Da-Ting Lin
  • Stuart Conway
  • Elizabeth Muller
  • James D Lechleiter
چکیده

Astrocytes play an essential role in the maintenance and protection of the brain, which we reported was diminished with age. Here, we demonstrate that activation of a purinergic receptor (P2Y-R) signaling pathway, in astrocytes, significantly increases the resistance of astrocytes and neurons to oxidative stress. Interestingly, P2Y-R activation in old astrocytes increased their resistance to oxidative stress to levels that were comparable with stimulated young astrocytes. P2Y-R enhanced neuroprotection was blocked by oligomycin and by Xestospongin C, inhibitors of the ATP synthase and of inositol (1,4,5) triphosphate (IP3) binding to the IP3 receptor, respectively. Treatment of astrocytes with a membrane permeant analog of IP3 also protected astrocytes against oxidative stress. These data indicate that P2Y-R enhanced astrocyte neuroprotection is mediated by a Ca2+-dependent increase in mitochondrial metabolism. These data also reveal a signaling pathway that can rapidly respond to central energy needs throughout the aging process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paul R . Territo , Vamsi K . Mootha , Stephanie A . French and Robert S . Balaban phosphorylation : role of the F 0 / F 1 - ATPase Ca 2 + activation of heart mitochondrial oxidative

[PDF] [Full Text] [Abstract] , January 1, 2007; 292 (1): C164-C177. Am J Physiol Cell Physiol T. D. Vo and B. O. Palsson systems biology Building the power house: recent advances in mitochondrial studies through proteomics and [PDF] [Full Text] [Abstract] , January 1, 2007; 87 (1): 29-67. Physiol Rev J. Satrustegui, B. Pardo and A. del Arco Mitochondrial Transporters as Novel Targets for In...

متن کامل

Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor

Thyroid hormone 3,5,3'-tri-iodothyronine (T3) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca2+ signaling by T3-bound TRs. Treatment of Xenopus thyroid hormone receptor beta subtype A1 (xTRbetaA1) expressing oocytes with T3 for 10 min increased inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ wave periodicity. Coexpression...

متن کامل

Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection

Background: Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (...

متن کامل

Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection

Background Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (S...

متن کامل

Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons.

Spontaneous neurotransmitter release and activation of group I metabotropic glutamate receptors (mGluRs) each play a role in the plasticity of neuronal synapses. Astrocytes may contribute to short- and long-term synaptic changes by signaling to neurons via these processes. Spontaneous whole-cell AMPA receptor (AMPAR) currents were recorded in CA1 pyramidal cells in situ while evoking Ca2+ incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 24  شماره 

صفحات  -

تاریخ انتشار 2007